A Sharp Rearrangement Inequality for Fractional Maximal Operator

نویسنده

  • A. Cianchi
چکیده

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

On the Bouundedness of Fractional B-maximal Operators in the Lorentz Spaces

In this study, sharp rearrangement inequalities for the fractional Bmaximal function Mα,γf are obtained in the Lorentz spaces Lp,q,γ and by using these inequalities the boundedness conditions of the operator Mα,γ are found. Then, the conditions for the boundedness of the Bmaximal operator Mγ are obtained in Lp,q,γ .

متن کامل

Meda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications

The Meda inequality for rearrangements of the convolution operator on the Heisenberg group Hn is proved. By using the Meda inequality, an O’Neil-type inequality for the convolution is obtained. As applications of these results, some sufficient and necessary conditions for the boundedness of the fractional maximal operator MΩ,α and fractional integral operator IΩ,α with rough kernels in the spac...

متن کامل

Non-linear Ground State Representations and Sharp Hardy Inequalities

We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in t...

متن کامل

Two weight norm inequalities for fractional one-sided maximal and integral operators

In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999