A Sharp Rearrangement Inequality for Fractional Maximal Operator
نویسنده
چکیده
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملOn the Bouundedness of Fractional B-maximal Operators in the Lorentz Spaces
In this study, sharp rearrangement inequalities for the fractional Bmaximal function Mα,γf are obtained in the Lorentz spaces Lp,q,γ and by using these inequalities the boundedness conditions of the operator Mα,γ are found. Then, the conditions for the boundedness of the Bmaximal operator Mγ are obtained in Lp,q,γ .
متن کاملMeda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications
The Meda inequality for rearrangements of the convolution operator on the Heisenberg group Hn is proved. By using the Meda inequality, an O’Neil-type inequality for the convolution is obtained. As applications of these results, some sufficient and necessary conditions for the boundedness of the fractional maximal operator MΩ,α and fractional integral operator IΩ,α with rough kernels in the spac...
متن کاملNon-linear Ground State Representations and Sharp Hardy Inequalities
We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in t...
متن کاملTwo weight norm inequalities for fractional one-sided maximal and integral operators
In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .
متن کامل